Posted on

Explainable 3D convolutional neural network using GMM encoding

Abstract:     The aim of this paper is to propose a novel method to explain, interpret, and support the decision-making process of deep Convolutional Neural Network (CNN). This is achieved by analyzing neuron activations of trained 3D-CNN on selected layers via Gaussian Mixture Model (GMM)   …  more


Posted on

Automatic Music Transcription using WaveNet

Deep generative models such as WaveNet are surprisingly good at various modelling tasks. We exploit the modelling capacity of WaveNet architecture in a setup that is quite different from the original generative case: for feature extraction and pattern recognition in sake of polyphonic music transcription. The model is trained end-to-end to perform the underlying task of multiple fundamental frequency estimation by processing raw waveforms of digital audio signal.   …  more

Posted on

Automatic brain segmentation method based on supervoxels

Martin Tamajka, Wanda Benesova


In this work, we present a fully automatic brain segmentation method based on supervoxels (ABSOS). We propose novel features used for classification, that are based on distance and angle in different planes between supervoxel and brain center. These novel features are combined with other prominent features. The presented method is based on machine learning and incorporates also a skull stripping (cranium removing) in the preprocessing step. Neural network – multilayer perceptron (MLP) was trained for the classification process. In this paper we also present thorough analysis, which supports choice of rather small supervoxels, preferring homogeneity over compactness, and value of intensity threshold parameter used in preprocessing for skull stripping. In order to decrease computational complexity and increase segmentation performance we incorporate prior knowledge of typical background intensities acquired in analysis of subjects.

Published in:

2016 International Conference on Systems, Signals and Image Processing (IWSSIP)

Date of Conference:

23-25 May 2016