#include using namespace cv; using namespace std; void onMouse( int event, int x, int y, int, void* param); void updateMag(Mat complex); void updateResult(Mat complex); Mat computeDFT(Mat image); Mat createGausFilterMask(Size mask_size, int x, int y, int ksize, bool normalization, bool invert); void shift(Mat magI); int kernel_size = 0; int main( int argc, char** argv ) { String file; file = " << SAMPLE FILE >>"; Mat image = imread(file, CV_LOAD_IMAGE_GRAYSCALE); namedWindow( "Orginal window", CV_WINDOW_AUTOSIZE );// Create a window for display. imshow( "Orginal window", image ); // Show our image inside it. Mat complex = computeDFT(image); namedWindow( "spectrum", CV_WINDOW_AUTOSIZE ); createTrackbar( "Gausian kernel size", "spectrum", &kernel_size, 255, 0 ); setMouseCallback( "spectrum", onMouse, &complex); updateMag(complex); // compute magnitude of complex, switch to logarithmic scale and display... updateResult(complex); // do inverse transform and display the result image waitKey(0); return 0; } void onMouse( int event, int x, int y, int, void* param) { if( event != CV_EVENT_LBUTTONDOWN ) return; // cast *param to use it local Mat* p_complex = (Mat*) param; Mat complex = *p_complex; Mat mask = createGausFilterMask(complex.size(), x, y, kernel_size, true, true); // show the kernel imshow("gaus-mask", mask); shift(mask); Mat planes[] = {Mat::zeros(complex.size(), CV_32F), Mat::zeros(complex.size(), CV_32F)}; Mat kernel_spec; planes[0] = mask; // real planes[1] = mask; // imaginar merge(planes, 2, kernel_spec); mulSpectrums(complex, kernel_spec, complex, DFT_ROWS); // only DFT_ROWS accepted updateMag(complex); // show spectrum updateResult(complex); // do inverse transform *p_complex = complex; return; } void updateResult(Mat complex) { Mat work; idft(complex, work); // dft(complex, work, DFT_INVERSE + DFT_SCALE); Mat planes[] = {Mat::zeros(complex.size(), CV_32F), Mat::zeros(complex.size(), CV_32F)}; split(work, planes); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I)) magnitude(planes[0], planes[1], work); // === sqrt(Re(DFT(I))^2 + Im(DFT(I))^2) normalize(work, work, 0, 1, NORM_MINMAX); imshow("result", work); } void updateMag(Mat complex ) { Mat magI; Mat planes[] = {Mat::zeros(complex.size(), CV_32F), Mat::zeros(complex.size(), CV_32F)}; split(complex, planes); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I)) magnitude(planes[0], planes[1], magI); // sqrt(Re(DFT(I))^2 + Im(DFT(I))^2) // switch to logarithmic scale: log(1 + magnitude) magI += Scalar::all(1); log(magI, magI); shift(magI); normalize(magI, magI, 1, 0, NORM_INF); // Transform the matrix with float values into a // viewable image form (float between values 0 and 1). imshow("spectrum", magI); } #include "dft_routines.h"; Mat computeDFT(Mat image) { // http://opencv.itseez.com/doc/tutorials/core/discrete_fourier_transform/discrete_fourier_transform.html Mat padded; //expand input image to optimal size int m = getOptimalDFTSize( image.rows ); int n = getOptimalDFTSize( image.cols ); // on the border add zero values copyMakeBorder(image, padded, 0, m - image.rows, 0, n - image.cols, BORDER_CONSTANT, Scalar::all(0)); Mat planes[] = {Mat_(padded), Mat::zeros(padded.size(), CV_32F)}; Mat complex; merge(planes, 2, complex); // Add to the expanded another plane with zeros dft(complex, complex, DFT_COMPLEX_OUTPUT); // furier transform return complex; } Mat createGausFilterMask(Size mask_size, int x, int y, int ksize, bool normalization, bool invert) { // Some corrections if out of bounds if(x < (ksize / 2)) { ksize = x * 2; } if(y < (ksize / 2)) { ksize = y * 2; } if(mask_size.width - x < ksize / 2 ) { ksize = (mask_size.width - x ) * 2; } if(mask_size.height - y < ksize / 2 ) { ksize = (mask_size.height - y) * 2; } // call openCV gaussian kernel generator double sigma = -1; Mat kernelX = getGaussianKernel(ksize, sigma, CV_32F); Mat kernelY = getGaussianKernel(ksize, sigma, CV_32F); // create 2d gaus Mat kernel = kernelX * kernelY.t(); // create empty mask Mat mask = Mat::zeros(mask_size, CV_32F); Mat maski = Mat::zeros(mask_size, CV_32F); // copy kernel to mask on x,y Mat pos(mask, Rect(x - ksize / 2, y - ksize / 2, ksize, ksize)); kernel.copyTo(pos); // create mirrored mask Mat posi(maski, Rect(( mask_size.width - x) - ksize / 2, (mask_size.height - y) - ksize / 2, ksize, ksize)); kernel.copyTo(posi); // add mirrored to mask add(mask, maski, mask); // transform mask to range 0..1 if(normalization) { normalize(mask, mask, 0, 1, NORM_MINMAX); } // invert mask if(invert) { mask = Mat::ones(mask.size(), CV_32F) - mask; } return mask; } void shift(Mat magI) { // crop if it has an odd number of rows or columns magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2)); int cx = magI.cols/2; int cy = magI.rows/2; Mat q0(magI, Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant Mat q1(magI, Rect(cx, 0, cx, cy)); // Top-Right Mat q2(magI, Rect(0, cy, cx, cy)); // Bottom-Left Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right Mat tmp; // swap quadrants (Top-Left with Bottom-Right) q0.copyTo(tmp); q3.copyTo(q0); tmp.copyTo(q3); q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left) q2.copyTo(q1); tmp.copyTo(q2); }