Posted on

Photo Merge Source

This post contains full Python source code for Photo Merge. Source by Michal Lohnický.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
<pre>#!/usr/bin/python
 
import cv
 
#######################################
# Class to hold helper functions
#######################################
class Helper():
image_set = 0
max_distance = 10000000
r_plane = None
g_plane = None
b_plane = None
hist1 = None
hist2 = None
is_init = False
color_bins = 2
color_range = [0, 255]
 
h_plane = None
s_plane = None
h_bins = 4#30
s_bins = 4#32
hist1_hsv = None
hist2_hsv = None
 
@staticmethod
def init(grid_size):
if Helper.is_init == True: return
Helper.is_init = True
Helper.r_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1)
Helper.g_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1)
Helper.b_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1)
color_bins = Helper.color_bins
color_range = Helper.color_range
Helper.hist1 = cv.CreateHist([color_bins, color_bins, color_bins], cv.CV_HIST_SPARSE, [color_range, color_range, color_range], 1)
Helper.hist2 = cv.CreateHist([color_bins, color_bins, color_bins], cv.CV_HIST_SPARSE, [color_range, color_range, color_range], 1)
 
Helper.h_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1)
Helper.s_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1)
h_bins = Helper.h_bins
s_bins = Helper.s_bins
ranges = [[0, 180],[0, 255]]
Helper.hist1_hsv = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1)
Helper.hist2_hsv = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1)
Helper.hsv_img = cv.CreateImage((grid_size, grid_size), 8, 3)
 
@staticmethod
def resize(im, new_width):
size = (new_width, int(im.height/float(im.width)*new_width) )
src_img_1_resized = cv.CreateImage(size, im.depth, im.nChannels)
cv.Resize(im, src_img_1_resized)
return src_img_1_resized
 
@staticmethod
def get_histogram_hsv(src, hist_used_ID=1):
# Convert to HSV
cv.CvtColor(src, Helper.hsv_img, cv.CV_BGR2HSV)
# Extract the H and S planes
cv.Split(Helper.hsv_img, Helper.h_plane, Helper.s_plane, None, None)
planes = [Helper.h_plane, Helper.s_plane]
if hist_used_ID==1:
cv.ClearHist(Helper.hist1_hsv)
cv.CalcHist([cv.GetImage(i) for i in planes], Helper.hist1_hsv)
return Helper.hist1_hsv
cv.ClearHist(Helper.hist2_hsv)
cv.CalcHist([cv.GetImage(i) for i in planes], Helper.hist2_hsv)
return Helper.hist2_hsv
 
@staticmethod
def get_histogram(src, hist_used_ID=1):
cv.Split(src, Helper.r_plane, Helper.g_plane, Helper.b_plane, None)
planes = [Helper.r_plane, Helper.g_plane, Helper.b_plane]
if hist_used_ID==1:
cv.ClearHist(Helper.hist1)
cv.CalcHist([cv.GetImage(i) for i in planes], Helper.hist1)
return Helper.hist1
cv.ClearHist(Helper.hist2)
cv.CalcHist([cv.GetImage(i) for i in planes], Helper.hist2)
return Helper.hist2
 
@staticmethod
def print_histogram(hist):
sum = 0
print "Printing histogram"
for r in range(0,Helper.color_bins):
for g in range(0,Helper.color_bins):
for b in range(0,Helper.color_bins):
intensity = cv.QueryHistValue_3D(hist,r,g,b)
sum+=intensity
if intensity>0.0000001:
print r,g,b,":", intensity
print "Overal histogram sum:",sum
 
@staticmethod
def print_histogram_double(hist1, hist2):
sum1 = 0
sum2 = 0
print "Printing histogram"
for r in range(0,Helper.color_bins):
for g in range(0,Helper.color_bins):
for b in range(0,Helper.color_bins):
intensity1 = cv.QueryHistValue_3D(hist1,r,g,b)
intensity2 = cv.QueryHistValue_3D(hist2,r,g,b)
sum1+=intensity1
sum2+=intensity2
if intensity1>0.0000001 or intensity2>0.0000001:
print r,g,b,":", intensity1, intensity2
print "Overal histogram sum:",sum1, sum2
 
mode_list = {
(cv.IPL_DEPTH_8U, 3) : "RGBA",
(cv.IPL_DEPTH_8U, 3) : "RGB",
(cv.IPL_DEPTH_8U, 1) : "L",
(cv.IPL_DEPTH_32F, 1) : "F"
}
mode_list_r = {
"RGBA" : (cv.IPL_DEPTH_8U, 3),
"RGB" : (cv.IPL_DEPTH_8U, 3),
"L" : (cv.IPL_DEPTH_8U, 1),
"F" : (cv.IPL_DEPTH_32F, 1)
}
@staticmethod
def convertToPIL(cv_im):
from PIL import Image
mode = Helper.mode_list[(cv_im.depth, cv_im.nChannels)]
return Image.fromstring(mode, cv.GetSize(cv_im), cv_im.tostring()), mode
 
@staticmethod
def convertFromPIL(pi):
mode = Helper.mode_list_r[pi.mode]
cv_im = cv.CreateImageHeader(pi.size, mode[0], mode[1])
cv.SetData(cv_im, pi.tostring(), pi.size[0]*mode[1])
return cv_im
 
@staticmethod
def reduce_colors(cv_im, colors_count):
from PIL import Image
pi, mode = Helper.convertToPIL(cv_im)
pi = pi.convert("RGB").convert("P", palette=Image.ADAPTIVE, colors=colors_count)
pi = pi.convert(mode)
return Helper.convertFromPIL(pi)
 
@staticmethod
def pasteMask(im1,im2,mask):
pi1, mode = Helper.convertToPIL(im1)
pi2, mode = Helper.convertToPIL(im2)
pimask, mode = Helper.convertToPIL(mask)
pi1.paste(pi2,(0,0),pimask)
return Helper.convertFromPIL(pi1)
 
#######################################
# Structure to hold matched values
#######################################
class SURFFeatureMatch():
keypoint_img_1 = None
descriptor_img_1 = None
keypoint_img_2 = None
descriptor_img_2 = None
distance = Helper.max_distance
 
#######################################
# Match feature points of 2 images
#######################################
class SURFFeaturesMatcher():
 
#=========================
# Match feature points of 2 images (main function)
#=========================
def findPairs(self, img_proc_1, img_proc_2):
matches = []
for i in range(0,len(img_proc_1.keypoints)):
featureMatch = SURFFeatureMatch()
featureMatch.keypoint_img_1 = img_proc_1.keypoints[i]
featureMatch.descriptor_img_1 = img_proc_1.descriptors[i]
#find nearest feature point
for j in range(0,len(img_proc_2.keypoints)):
if featureMatch.keypoint_img_1[1] == img_proc_2.keypoints[j][1]: #laplacians has to be same
if abs(featureMatch.keypoint_img_1[3] - img_proc_2.keypoints[j][3])<45: #similar orientation
if self.realSqrDistance(featureMatch.keypoint_img_1[0], img_proc_2.keypoints[j][0])<4000:
dist = self.descriptorsDistance(featureMatch.descriptor_img_1, img_proc_2.descriptors[j], featureMatch.distance)
if dist current_best: break
return total_cost
 
#=========================
# Equlide distance TODO consider image size
#=========================
def realSqrDistance(self, p1, p2):
return (p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1])
 
#######################################
# Image processing class
#######################################
class ImageProcessor:
keypoints = None
descriptors = None
src_img_orig = None
src_img = None
src_img_colored = None
src_img_path = ""
matched_features = None
binded_img_proc = None
top_feature_points_count = 500
grid_size = 10
grid_tamplateMatching_offset = 8
 
def __init__(self, path):
self.homography = None
self.src_img_path = path
self.src_img = Helper.resize(cv.LoadImage(self.src_img_path, cv.CV_LOAD_IMAGE_GRAYSCALE), 800)
self.src_img_colored = Helper.resize(cv.LoadImage(self.src_img_path, cv.CV_LOAD_IMAGE_COLOR), 800)
self.src_img_colored = Helper.reduce_colors(self.src_img_colored,255)
self.src_img_orig = Helper.resize(cv.LoadImage(self.src_img_path, cv.CV_LOAD_IMAGE_COLOR), 800)
Helper.init(self.grid_size)
 
def extractSURFFeatures(self):
try:
self.border_w = int(self.src_img.width * 0.1)
self.border_h = int(self.src_img.height * 0.1)
cv.SetImageROI(self.src_img, ( self.border_w, self.border_h, self.src_img.width-2*self.border_w, self.src_img.height-2*self.border_h ) )
(self.keypoints, self.descriptors) = cv.ExtractSURF(self.src_img, None, cv.CreateMemStorage(), (1, 500, 3, 4))
print self.src_img_path+":\n"+" keypoints: "+str(len(self.keypoints))+"\n descriptors: "+str(len(self.descriptors))
cv.ResetImageROI(self.src_img)
except Exception, e:
print e
 
def findSURFFeaturesPairs(self,img_proc):
if self.keypoints == None: self.extractSURFFeatures()
if img_proc.keypoints == None: img_proc.extractSURFFeatures()
self.binded_img_proc = img_proc
featureMatcher = SURFFeaturesMatcher()
self.matched_features = featureMatcher.findPairs(self,img_proc)
 
def getImportantFeaturePoints(self, top_points_count):
ret_1 = []
ret_2 = []
for featureMatch in self.matched_features[:top_points_count]:
point_1 = (int(featureMatch.keypoint_img_1[0][0]+self.border_w), int(featureMatch.keypoint_img_1[0][1]+self.border_h))
point_2 = (int(featureMatch.keypoint_img_2[0][0]+self.border_w), int(featureMatch.keypoint_img_2[0][1]+self.border_h))
ret_1.append(point_1)
ret_2.append(point_2)
return ret_1, ret_2
 
def getHomography(self):
if self.homography!=None: return self.homography
srcKeypoints, dstKeypoints = self.getImportantFeaturePoints(self.top_feature_points_count)
dim=len(srcKeypoints)
srcMat=cv.CreateMat(dim,2,cv.CV_32FC1)
dstMat=cv.CreateMat(dim,2,cv.CV_32FC1)
for i in range(1,dim):
srcMat[i,0]=srcKeypoints[i][0]
srcMat[i,1]=srcKeypoints[i][1]
dstMat[i,0]=dstKeypoints[i][0]
dstMat[i,1]=dstKeypoints[i][1]
h=cv.CreateMat(3,3,cv.CV_64F)
cv.FindHomography(dstMat,srcMat, h,cv.CV_RANSAC,5)
self.homography = h
return h
 
def warpImage(self):
src_img_warped = cv.CloneImage(self.binded_img_proc.src_img_colored)
src_img_orig_warped = cv.CloneImage(self.binded_img_proc.src_img_orig)
homo = self.getHomography()
cv.WarpPerspective(self.binded_img_proc.src_img_colored, src_img_warped, homo)
cv.WarpPerspective(self.binded_img_proc.src_img_orig, src_img_orig_warped, homo)
return src_img_warped, src_img_orig_warped
 
def drawSURFFeatures(self):
window_name = "SURF "+self.src_img_path
cv.NamedWindow(window_name, 1)
for ((x, y), laplacian, size, dir, hessian) in self.keypoints:
radio = size*1.2/9.*2
color = (255, 0, 0)
if radio < 3:
radio = 2
color = (0, 255, 0)
cv.Circle(self.src_img_colored, (int(self.border_w+x),int(self.border_h+y)), int(radio), (0,255,0))
cv.ShowImage(window_name, self.src_img_colored)
 
def drawMatchedPoints(self):
#merge photos
merged_size = (self.src_img.width, self.src_img.height + self.binded_img_proc.src_img.height)
correspond = cv.CreateImage( merged_size, self.src_img.depth, self.src_img.nChannels)
cv.SetImageROI( correspond, ( 0, 0, self.src_img.width, self.src_img.height ) )
cv.Copy( self.src_img, correspond )
cv.SetImageROI( correspond, ( 0, self.src_img.height, correspond.width, correspond.height ) )
cv.Copy( self.binded_img_proc.src_img, correspond )
cv.ResetImageROI( correspond )
#create window
window_name = "Matched features"
cv.NamedWindow(window_name, 1)
#draw lines
points_1, points_2 = self.getImportantFeaturePoints(self.top_feature_points_count)
for i in range(0,len(points_1)):
point_2 = (int(points_2[i][0]), int(points_2[i][1]+ self.src_img.height))
cv.Line( correspond, points_1[i], point_2, 128 )
#show image
cv.ShowImage(window_name, correspond)
 
def findMid(self, histogram):
#normalize
offset = len(histogram)/4
hist = []
for i in range(offset,len(histogram)-offset):
hist.append((histogram[i-2]*0.3+histogram[i-1]*0.7+histogram[i]+histogram[i+1]*0.7+histogram[i+2]*0.3)/3)
maxi = max(hist)
for i in range(0,len(hist)): hist[i]/=maxi
#find maxes
max1_val = 0
max1_ind = 0
max2_val = 0
max2_ind = 0
ind1 = 0
ind2 = len(hist)-1
while ind1max1_val:
max1_val = hist[ind1]
max1_ind = ind1
if hist[ind2]>max2_val:
max2_val = hist[ind2]
max2_ind = ind2
ind1+=1
ind2-=1
print max1_ind, max2_ind
#find min
mid = len(hist)/2
min_ind = 0
min_val = 10000000
for i in range(max1_ind,max2_ind):
new_val = hist[i]#*((abs(mid-i)/float(mid))*0.3+0.7)
print i, ":", hist[i]
if new_val=mid_ind:
cv.Rectangle(mask2, (0, 0), (grid_size, grid_size), 0, thickness=-1)
cv.ResetImageROI(mask1)
cv.ResetImageROI(mask2)
element_width_half = grid_size*2
element = cv.CreateStructuringElementEx(element_width_half*2+1, element_width_half*2+1, element_width_half, element_width_half, cv.CV_SHAPE_RECT)
cv.Erode(mask2, mask2, element, 1)
cv.Dilate(mask2, mask2, element, 1)
cv.Erode(mask2, mask2, element, 1)
cv.Erode(mask1, mask1, element, 1)
cv.Dilate(mask1, mask1, element, 1)
cv.Erode(mask1, mask1, element, 1)
#finalize
cv.Smooth(mask1, mask1, cv.CV_BLUR, grid_size*2, grid_size*2)
cv.Smooth(mask2, mask2, cv.CV_BLUR, grid_size*2, grid_size*2)
mask1 = Helper.resize(mask1, img_orig1.width)
mask2 = Helper.resize(mask2, img_orig2.width)
img_res1 = Helper.pasteMask(img_orig1,img_orig2,mask1)
img_res2 = Helper.pasteMask(img_orig1,img_orig2,mask2)
img_proc_1.crop(img_res1)
cv.SaveImage("res1"+str(Helper.image_set)+".png",img_res1)
cv.SaveImage("res2"+str(Helper.image_set)+".png",img_res2)
 
def crop(self,im):
roz = [[0, im.width, 0, im.width],[0, 0, im.height, im.height]]
p = []
for i in range(0,4):
p.append(cv.CreateMat(1,3,cv.CV_64FC1))
p[i][0,0]=roz[0][i]
p[i][0,1]=roz[1][i]
p[i][0,2]=1
cv.MatMul(p[i],self.homography,p[i])
p[i][0,0]/=p[i][0,2]
p[i][0,1]/=p[i][0,2]
cropped = cv.CreateImage( (im.width, im.height), im.depth, im.nChannel)
src_region = cvGetSubRect(image, opencv.cvRect(left, top, new_width, new_height) )
cvCopy(src_region, cropped)
 
import sys
if __name__ == "__main__":
Helper.image_set = str(sys.argv[1])
image_set = Helper.image_set
img_proc_1 = ImageProcessor(".\\test_imgs\\"+str(image_set).zfill(2)+"_01.JPG")
img_proc_2 = ImageProcessor(".\\test_imgs\\"+str(image_set).zfill(2)+"_02.JPG")
img_final = cv.CreateImage( (img_proc_1.src_img_colored.width, img_proc_1.src_img_colored.height), img_proc_1.src_img_colored.depth, img_proc_1.src_img_colored.nChannels)
img_histograms = cv.CreateImage( (img_proc_1.src_img_colored.width, img_proc_1.src_img_colored.height), 8, 1)
 
img_proc_1.extractSURFFeatures()
img_proc_2.extractSURFFeatures()
img_proc_1.findSURFFeaturesPairs(img_proc_2)
img_proc_1.drawMatchedPoints()
src_img_warped, src_img_orig_warped = img_proc_1.warpImage()
 
histograms_diffs = []
 
templateMatching_offset = 8
templateMatching_result = cv.CreateImage((templateMatching_offset+1, templateMatching_offset+1), cv.IPL_DEPTH_32F, 1)
grid_size = ImageProcessor.grid_size
act_width = templateMatching_offset/2
while act_width+grid_size(maxi-mini)*0.5:
grid_mask_cols.append(1)
frame_thickness = 1
if first and act_width<400 and act_height<230 and act_width>300 and act_height>180:
hist1 = Helper.get_histogram(img_proc_1.src_img_colored, hist_used_ID=1)
hist2 = Helper.get_histogram(src_img_warped, hist_used_ID=2)
frame_thickness = -1
first = False
cv.Copy( img_proc_1.src_img_colored, img_final )
frame_color = 128
cv.Rectangle(img_histograms, (1, 1), (grid_size-1, grid_size-1), 0)
else:
grid_mask_cols.append(0)
cv.Copy( src_img_warped, img_final )
grid_mask.append(grid_mask_cols)
 
cv.ResetImageROI(img_proc_1.src_img_colored)
cv.ResetImageROI(src_img_warped)
cv.ResetImageROI(img_final)
cv.ResetImageROI(img_histograms)
 
img_proc_1.combinePictures(img_proc_1.src_img_orig, src_img_orig_warped, img_proc_1.src_img_colored, src_img_warped, grid_mask)
 
cv.ShowImage("tmp",img_proc_1.src_img_colored)
cv.ShowImage("tmp2",src_img_warped)
cv.ShowImage("tmp1",img_histograms)
cv.ShowImage("FINAL",img_final)
cv.WaitKey()
cv.DestroyAllWindows()</pre>