This post contains full Python source code for Photo Merge. Source by Michal Lohnický.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | <pre> #!/usr/bin/python import cv ####################################### # Class to hold helper functions ####################################### class Helper(): image_set = 0 max_distance = 10000000 r_plane = None g_plane = None b_plane = None hist1 = None hist2 = None is_init = False color_bins = 2 color_range = [ 0 , 255 ] h_plane = None s_plane = None h_bins = 4 #30 s_bins = 4 #32 hist1_hsv = None hist2_hsv = None @staticmethod def init(grid_size): if Helper.is_init = = True : return Helper.is_init = True Helper.r_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1) Helper.g_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1) Helper.b_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1) color_bins = Helper.color_bins color_range = Helper.color_range Helper.hist1 = cv.CreateHist([color_bins, color_bins, color_bins], cv.CV_HIST_SPARSE, [color_range, color_range, color_range], 1 ) Helper.hist2 = cv.CreateHist([color_bins, color_bins, color_bins], cv.CV_HIST_SPARSE, [color_range, color_range, color_range], 1 ) Helper.h_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1) Helper.s_plane = cv.CreateMat(grid_size, grid_size, cv.CV_8UC1) h_bins = Helper.h_bins s_bins = Helper.s_bins ranges = [[ 0 , 180 ],[ 0 , 255 ]] Helper.hist1_hsv = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1 ) Helper.hist2_hsv = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1 ) Helper.hsv_img = cv.CreateImage((grid_size, grid_size), 8 , 3 ) @staticmethod def resize(im, new_width): size = (new_width, int (im.height / float (im.width) * new_width) ) src_img_1_resized = cv.CreateImage(size, im.depth, im.nChannels) cv.Resize(im, src_img_1_resized) return src_img_1_resized @staticmethod def get_histogram_hsv(src, hist_used_ID = 1 ): # Convert to HSV cv.CvtColor(src, Helper.hsv_img, cv.CV_BGR2HSV) # Extract the H and S planes cv.Split(Helper.hsv_img, Helper.h_plane, Helper.s_plane, None , None ) planes = [Helper.h_plane, Helper.s_plane] if hist_used_ID = = 1 : cv.ClearHist(Helper.hist1_hsv) cv.CalcHist([cv.GetImage(i) for i in planes], Helper.hist1_hsv) return Helper.hist1_hsv cv.ClearHist(Helper.hist2_hsv) cv.CalcHist([cv.GetImage(i) for i in planes], Helper.hist2_hsv) return Helper.hist2_hsv @staticmethod def get_histogram(src, hist_used_ID = 1 ): cv.Split(src, Helper.r_plane, Helper.g_plane, Helper.b_plane, None ) planes = [Helper.r_plane, Helper.g_plane, Helper.b_plane] if hist_used_ID = = 1 : cv.ClearHist(Helper.hist1) cv.CalcHist([cv.GetImage(i) for i in planes], Helper.hist1) return Helper.hist1 cv.ClearHist(Helper.hist2) cv.CalcHist([cv.GetImage(i) for i in planes], Helper.hist2) return Helper.hist2 @staticmethod def print_histogram(hist): sum = 0 print "Printing histogram" for r in range ( 0 ,Helper.color_bins): for g in range ( 0 ,Helper.color_bins): for b in range ( 0 ,Helper.color_bins): intensity = cv.QueryHistValue_3D(hist,r,g,b) sum + = intensity if intensity> 0.0000001 : print r,g,b, ":" , intensity print "Overal histogram sum:" , sum @staticmethod def print_histogram_double(hist1, hist2): sum1 = 0 sum2 = 0 print "Printing histogram" for r in range ( 0 ,Helper.color_bins): for g in range ( 0 ,Helper.color_bins): for b in range ( 0 ,Helper.color_bins): intensity1 = cv.QueryHistValue_3D(hist1,r,g,b) intensity2 = cv.QueryHistValue_3D(hist2,r,g,b) sum1 + = intensity1 sum2 + = intensity2 if intensity1> 0.0000001 or intensity2> 0.0000001 : print r,g,b, ":" , intensity1, intensity2 print "Overal histogram sum:" ,sum1, sum2 mode_list = { (cv.IPL_DEPTH_8U, 3 ) : "RGBA" , (cv.IPL_DEPTH_8U, 3 ) : "RGB" , (cv.IPL_DEPTH_8U, 1 ) : "L" , (cv.IPL_DEPTH_32F, 1 ) : "F" } mode_list_r = { "RGBA" : (cv.IPL_DEPTH_8U, 3 ), "RGB" : (cv.IPL_DEPTH_8U, 3 ), "L" : (cv.IPL_DEPTH_8U, 1 ), "F" : (cv.IPL_DEPTH_32F, 1 ) } @staticmethod def convertToPIL(cv_im): from PIL import Image mode = Helper.mode_list[(cv_im.depth, cv_im.nChannels)] return Image.fromstring(mode, cv.GetSize(cv_im), cv_im.tostring()), mode @staticmethod def convertFromPIL(pi): mode = Helper.mode_list_r[pi.mode] cv_im = cv.CreateImageHeader(pi.size, mode[ 0 ], mode[ 1 ]) cv.SetData(cv_im, pi.tostring(), pi.size[ 0 ] * mode[ 1 ]) return cv_im @staticmethod def reduce_colors(cv_im, colors_count): from PIL import Image pi, mode = Helper.convertToPIL(cv_im) pi = pi.convert( "RGB" ).convert( "P" , palette = Image.ADAPTIVE, colors = colors_count) pi = pi.convert(mode) return Helper.convertFromPIL(pi) @staticmethod def pasteMask(im1,im2,mask): pi1, mode = Helper.convertToPIL(im1) pi2, mode = Helper.convertToPIL(im2) pimask, mode = Helper.convertToPIL(mask) pi1.paste(pi2,( 0 , 0 ),pimask) return Helper.convertFromPIL(pi1) ####################################### # Structure to hold matched values ####################################### class SURFFeatureMatch(): keypoint_img_1 = None descriptor_img_1 = None keypoint_img_2 = None descriptor_img_2 = None distance = Helper.max_distance ####################################### # Match feature points of 2 images ####################################### class SURFFeaturesMatcher(): #========================= # Match feature points of 2 images (main function) #========================= def findPairs( self , img_proc_1, img_proc_2): matches = [] for i in range ( 0 , len (img_proc_1.keypoints)): featureMatch = SURFFeatureMatch() featureMatch.keypoint_img_1 = img_proc_1.keypoints[i] featureMatch.descriptor_img_1 = img_proc_1.descriptors[i] #find nearest feature point for j in range ( 0 , len (img_proc_2.keypoints)): if featureMatch.keypoint_img_1[ 1 ] = = img_proc_2.keypoints[j][ 1 ]: #laplacians has to be same if abs (featureMatch.keypoint_img_1[ 3 ] - img_proc_2.keypoints[j][ 3 ])< 45 : #similar orientation if self .realSqrDistance(featureMatch.keypoint_img_1[ 0 ], img_proc_2.keypoints[j][ 0 ])< 4000 : dist = self .descriptorsDistance(featureMatch.descriptor_img_1, img_proc_2.descriptors[j], featureMatch.distance) if dist current_best: break return total_cost #========================= # Equlide distance TODO consider image size #========================= def realSqrDistance( self , p1, p2): return (p1[ 0 ] - p2[ 0 ]) * (p1[ 0 ] - p2[ 0 ]) + (p1[ 1 ] - p2[ 1 ]) * (p1[ 1 ] - p2[ 1 ]) ####################################### # Image processing class ####################################### class ImageProcessor: keypoints = None descriptors = None src_img_orig = None src_img = None src_img_colored = None src_img_path = "" matched_features = None binded_img_proc = None top_feature_points_count = 500 grid_size = 10 grid_tamplateMatching_offset = 8 def __init__( self , path): self .homography = None self .src_img_path = path self .src_img = Helper.resize(cv.LoadImage( self .src_img_path, cv.CV_LOAD_IMAGE_GRAYSCALE), 800 ) self .src_img_colored = Helper.resize(cv.LoadImage( self .src_img_path, cv.CV_LOAD_IMAGE_COLOR), 800 ) self .src_img_colored = Helper.reduce_colors( self .src_img_colored, 255 ) self .src_img_orig = Helper.resize(cv.LoadImage( self .src_img_path, cv.CV_LOAD_IMAGE_COLOR), 800 ) Helper.init( self .grid_size) def extractSURFFeatures( self ): try : self .border_w = int ( self .src_img.width * 0.1 ) self .border_h = int ( self .src_img.height * 0.1 ) cv.SetImageROI( self .src_img, ( self .border_w, self .border_h, self .src_img.width - 2 * self .border_w, self .src_img.height - 2 * self .border_h ) ) ( self .keypoints, self .descriptors) = cv.ExtractSURF( self .src_img, None , cv.CreateMemStorage(), ( 1 , 500 , 3 , 4 )) print self .src_img_path + ":\n" + " keypoints: " + str ( len ( self .keypoints)) + "\n descriptors: " + str ( len ( self .descriptors)) cv.ResetImageROI( self .src_img) except Exception, e: print e def findSURFFeaturesPairs( self ,img_proc): if self .keypoints = = None : self .extractSURFFeatures() if img_proc.keypoints = = None : img_proc.extractSURFFeatures() self .binded_img_proc = img_proc featureMatcher = SURFFeaturesMatcher() self .matched_features = featureMatcher.findPairs( self ,img_proc) def getImportantFeaturePoints( self , top_points_count): ret_1 = [] ret_2 = [] for featureMatch in self .matched_features[:top_points_count]: point_1 = ( int (featureMatch.keypoint_img_1[ 0 ][ 0 ] + self .border_w), int (featureMatch.keypoint_img_1[ 0 ][ 1 ] + self .border_h)) point_2 = ( int (featureMatch.keypoint_img_2[ 0 ][ 0 ] + self .border_w), int (featureMatch.keypoint_img_2[ 0 ][ 1 ] + self .border_h)) ret_1.append(point_1) ret_2.append(point_2) return ret_1, ret_2 def getHomography( self ): if self .homography! = None : return self .homography srcKeypoints, dstKeypoints = self .getImportantFeaturePoints( self .top_feature_points_count) dim = len (srcKeypoints) srcMat = cv.CreateMat(dim, 2 ,cv.CV_32FC1) dstMat = cv.CreateMat(dim, 2 ,cv.CV_32FC1) for i in range ( 1 ,dim): srcMat[i, 0 ] = srcKeypoints[i][ 0 ] srcMat[i, 1 ] = srcKeypoints[i][ 1 ] dstMat[i, 0 ] = dstKeypoints[i][ 0 ] dstMat[i, 1 ] = dstKeypoints[i][ 1 ] h = cv.CreateMat( 3 , 3 ,cv.CV_64F) cv.FindHomography(dstMat,srcMat, h,cv.CV_RANSAC, 5 ) self .homography = h return h def warpImage( self ): src_img_warped = cv.CloneImage( self .binded_img_proc.src_img_colored) src_img_orig_warped = cv.CloneImage( self .binded_img_proc.src_img_orig) homo = self .getHomography() cv.WarpPerspective( self .binded_img_proc.src_img_colored, src_img_warped, homo) cv.WarpPerspective( self .binded_img_proc.src_img_orig, src_img_orig_warped, homo) return src_img_warped, src_img_orig_warped def drawSURFFeatures( self ): window_name = "SURF " + self .src_img_path cv.NamedWindow(window_name, 1 ) for ((x, y), laplacian, size, dir , hessian) in self .keypoints: radio = size * 1.2 / 9. * 2 color = ( 255 , 0 , 0 ) if radio < 3 : radio = 2 color = ( 0 , 255 , 0 ) cv.Circle( self .src_img_colored, ( int ( self .border_w + x), int ( self .border_h + y)), int (radio), ( 0 , 255 , 0 )) cv.ShowImage(window_name, self .src_img_colored) def drawMatchedPoints( self ): #merge photos merged_size = ( self .src_img.width, self .src_img.height + self .binded_img_proc.src_img.height) correspond = cv.CreateImage( merged_size, self .src_img.depth, self .src_img.nChannels) cv.SetImageROI( correspond, ( 0 , 0 , self .src_img.width, self .src_img.height ) ) cv.Copy( self .src_img, correspond ) cv.SetImageROI( correspond, ( 0 , self .src_img.height, correspond.width, correspond.height ) ) cv.Copy( self .binded_img_proc.src_img, correspond ) cv.ResetImageROI( correspond ) #create window window_name = "Matched features" cv.NamedWindow(window_name, 1 ) #draw lines points_1, points_2 = self .getImportantFeaturePoints( self .top_feature_points_count) for i in range ( 0 , len (points_1)): point_2 = ( int (points_2[i][ 0 ]), int (points_2[i][ 1 ] + self .src_img.height)) cv.Line( correspond, points_1[i], point_2, 128 ) #show image cv.ShowImage(window_name, correspond) def findMid( self , histogram): #normalize offset = len (histogram) / 4 hist = [] for i in range (offset, len (histogram) - offset): hist.append((histogram[i - 2 ] * 0.3 + histogram[i - 1 ] * 0.7 + histogram[i] + histogram[i + 1 ] * 0.7 + histogram[i + 2 ] * 0.3 ) / 3 ) maxi = max (hist) for i in range ( 0 , len (hist)): hist[i] / = maxi #find maxes max1_val = 0 max1_ind = 0 max2_val = 0 max2_ind = 0 ind1 = 0 ind2 = len (hist) - 1 while ind1max1_val: max1_val = hist[ind1] max1_ind = ind1 if hist[ind2]>max2_val: max2_val = hist[ind2] max2_ind = ind2 ind1 + = 1 ind2 - = 1 print max1_ind, max2_ind #find min mid = len (hist) / 2 min_ind = 0 min_val = 10000000 for i in range (max1_ind,max2_ind): new_val = hist[i] #*((abs(mid-i)/float(mid))*0.3+0.7) print i, ":" , hist[i] if new_val = mid_ind: cv.Rectangle(mask2, ( 0 , 0 ), (grid_size, grid_size), 0 , thickness = - 1 ) cv.ResetImageROI(mask1) cv.ResetImageROI(mask2) element_width_half = grid_size * 2 element = cv.CreateStructuringElementEx(element_width_half * 2 + 1 , element_width_half * 2 + 1 , element_width_half, element_width_half, cv.CV_SHAPE_RECT) cv.Erode(mask2, mask2, element, 1 ) cv.Dilate(mask2, mask2, element, 1 ) cv.Erode(mask2, mask2, element, 1 ) cv.Erode(mask1, mask1, element, 1 ) cv.Dilate(mask1, mask1, element, 1 ) cv.Erode(mask1, mask1, element, 1 ) #finalize cv.Smooth(mask1, mask1, cv.CV_BLUR, grid_size * 2 , grid_size * 2 ) cv.Smooth(mask2, mask2, cv.CV_BLUR, grid_size * 2 , grid_size * 2 ) mask1 = Helper.resize(mask1, img_orig1.width) mask2 = Helper.resize(mask2, img_orig2.width) img_res1 = Helper.pasteMask(img_orig1,img_orig2,mask1) img_res2 = Helper.pasteMask(img_orig1,img_orig2,mask2) img_proc_1.crop(img_res1) cv.SaveImage( "res1" + str (Helper.image_set) + ".png" ,img_res1) cv.SaveImage( "res2" + str (Helper.image_set) + ".png" ,img_res2) def crop( self ,im): roz = [[ 0 , im.width, 0 , im.width],[ 0 , 0 , im.height, im.height]] p = [] for i in range ( 0 , 4 ): p.append(cv.CreateMat( 1 , 3 ,cv.CV_64FC1)) p[i][ 0 , 0 ] = roz[ 0 ][i] p[i][ 0 , 1 ] = roz[ 1 ][i] p[i][ 0 , 2 ] = 1 cv.MatMul(p[i], self .homography,p[i]) p[i][ 0 , 0 ] / = p[i][ 0 , 2 ] p[i][ 0 , 1 ] / = p[i][ 0 , 2 ] cropped = cv.CreateImage( (im.width, im.height), im.depth, im.nChannel) src_region = cvGetSubRect(image, opencv.cvRect(left, top, new_width, new_height) ) cvCopy(src_region, cropped) import sys if __name__ = = "__main__" : Helper.image_set = str (sys.argv[ 1 ]) image_set = Helper.image_set img_proc_1 = ImageProcessor( ".\\test_imgs\\"+str(image_set).zfill(2)+" _01.JPG") img_proc_2 = ImageProcessor( ".\\test_imgs\\"+str(image_set).zfill(2)+" _02.JPG") img_final = cv.CreateImage( (img_proc_1.src_img_colored.width, img_proc_1.src_img_colored.height), img_proc_1.src_img_colored.depth, img_proc_1.src_img_colored.nChannels) img_histograms = cv.CreateImage( (img_proc_1.src_img_colored.width, img_proc_1.src_img_colored.height), 8 , 1 ) img_proc_1.extractSURFFeatures() img_proc_2.extractSURFFeatures() img_proc_1.findSURFFeaturesPairs(img_proc_2) img_proc_1.drawMatchedPoints() src_img_warped, src_img_orig_warped = img_proc_1.warpImage() histograms_diffs = [] templateMatching_offset = 8 templateMatching_result = cv.CreateImage((templateMatching_offset + 1 , templateMatching_offset + 1 ), cv.IPL_DEPTH_32F, 1 ) grid_size = ImageProcessor.grid_size act_width = templateMatching_offset / 2 while act_width + grid_size(maxi - mini) * 0.5 : grid_mask_cols.append( 1 ) frame_thickness = 1 if first and act_width< 400 and act_height< 230 and act_width> 300 and act_height> 180 : hist1 = Helper.get_histogram(img_proc_1.src_img_colored, hist_used_ID = 1 ) hist2 = Helper.get_histogram(src_img_warped, hist_used_ID = 2 ) frame_thickness = - 1 first = False cv.Copy( img_proc_1.src_img_colored, img_final ) frame_color = 128 cv.Rectangle(img_histograms, ( 1 , 1 ), (grid_size - 1 , grid_size - 1 ), 0 ) else : grid_mask_cols.append( 0 ) cv.Copy( src_img_warped, img_final ) grid_mask.append(grid_mask_cols) cv.ResetImageROI(img_proc_1.src_img_colored) cv.ResetImageROI(src_img_warped) cv.ResetImageROI(img_final) cv.ResetImageROI(img_histograms) img_proc_1.combinePictures(img_proc_1.src_img_orig, src_img_orig_warped, img_proc_1.src_img_colored, src_img_warped, grid_mask) cv.ShowImage( "tmp" ,img_proc_1.src_img_colored) cv.ShowImage( "tmp2" ,src_img_warped) cv.ShowImage( "tmp1" ,img_histograms) cv.ShowImage( "FINAL" ,img_final) cv.WaitKey() cv.DestroyAllWindows()< / pre> |