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Abstract—Deep neural networks−especially new, sophisticated
architectures−are gaining increased competence at various tasks
of growing complexity. Automatic transcription of polyphonic
music is a complex problem with state-of-the-art approaches
still suffering from high error rates relative to human-level
performance. WaveNet is a novel deep neural network architec-
ture with significant audio modelling capacity, operating directly
on samples of digital audio signal. We propose an approach
to polyphonic note transcription using WaveNet for feature
extraction from raw audio and recognition of note presence. We
show, that WaveNet can be used to detect pitch in polyphonic
audio texture, as opposed to most other approaches, which mostly
depend on time-frequency representations. Model outputs are
smoothed and truncated using one of two alternative thresholding
techniques. We evaluate our method on recently released dataset
MusicNet and compare frame-level transcription performance
to benchmark models. Results are promising, although further
evaluation is needed to explore performance limits of this method.

Index Terms—Deep End-to-End Learning; Neural Network;
Polyphonic Note Transcription; WaveNet; Multi-Pitch Estimation

I. INTRODUCTION

Music Information Retrieval (MIR) is an interdisciplinary
science of retrieving various information from music. Some
interesting problems addressed by MIR are Similarity Search,
Query by Humming, Key Detection, Chord Estimation, Beat
Tracking, Tempo Estimation and most notably, Multiple Fun-
damental Frequency Estimation (Multiple-F0 Estimation). All
these tasks are motivated by a demand from either academia
or industry, to provide software means for music analysis,
production, distribution, organization, storage or reproduction.

Manually performed music transcription, also called mu-
sical dictation in music pedagogy, is a skill of identification
music elements solely by hearing, which even talented musi-
cians need to develop by practice (ear training).

The problem of Automatic Music Transcription (AMT) is
considered one of the Holy Grails in MIR, since a transcrip-
tion yields symbolic representation of music content, which
contains information substantial to many other MIR tasks.

Many approaches to multi-pitch estimation have been exam-
ined so far. They break down by philosophy into following:

• Frame-level - separate estimations per time frame.
• Note-level - tracking notes from onset to offset.
• Stream-level - tracking pitch streams by sources.

Since AMT is a complex task, many methods have been
tuned to fit specific usage scenario or dataset characteristics.
This variety in previous works also gave rise to different
evaluation methodologies and metrics. The common property
of all existing methods is the lack of accuracy, in terms of
several transcription errors per musical piece, which is still
deep below performance of human expert, according to [1].

We examine a data-driven, classification-based approach
to frame-level multi-pitch estimation, based on recently de-
veloped, deep artificial neural network architecture, called
WaveNet [2], which operates on raw audio samples. Our
motivation is twofold:

First, most of the difficulty in building a reliable tran-
scription system rests in the richness of variations in musical
acoustic signals. Particularly with respect to varying properties
such as room acoustics, recording conditions or instrument-
characteristic timbre. These give rise to unique characteristics,
such as spectral and time envelope of individual notes observed
in recorded musical audio signals. We believe, that deep
learning using large datasets is a proper candidate approach
to capture those variations and create robust models for note
recognition.

Second, most existing machine learning approaches to AMT
rely on time-frequency representations of audio signal. These
are typically obtained through spectral analysis using Fourier
Transform or other linear transforms closely related to the
Fourier Transform. Features derived from spectral analysis
are often used in some reduced, post-processed form. Also,
choice of parameters like size and type of window function
influence the quality of derived spectral features. This results
in sub-optimal, handcrafted feature representation. It has been
shown, that neural network can learn a set of features which
outperform spectrograms for note detection [3]. We believe,
that tailoring network architectures such as WaveNet for raw
audio modelling, is a reasonable step further in this direction.

The remainder of this paper is structured as follows: We
review some of the most relevant existing works in Section
II to provide the reader with some more context. In Sec-
tion III, we present a detailed description of our approach,
including adaptation of WaveNet for the task of frame-level
note transcription. In Section IV, we describe our evaluation
methodology and present the results in comparison to recently
published benchmark. Finally, we conclude our findings and
provide discussion of possible future work in Section V.



II. RELATED WORK

Although there have been many contributions to problem of
AMT from researchers with various backgrounds, we focus
on the ones based on machine learning algorithms, since
those are the most relevant ones to our work. However, for
a comprehensive review of current AMT systems, please refer
to this report [1].

A. Early Machine Learning Approaches

One fundamental piece of earlier work that incorporates
learning into AMT system was done by Marolt [4]. Inspired
by human auditory system, author proposed model for time-
frequency transformation, using bank of 200 gammatone filters
spaced logarithmically on frequency axis and subsequently
Meddis’ model of hair cell transduction. With neuroscientific
view on human perception of pitch, adaptive oscillators,
are used to track partials and are further combined into 88
oscillator networks, one for each piano key.

In other work, for each of 88 piano keys, single one-
versus-all binary Support Vector Machine (SVM) classifier is
trained on spectral features [5]. Classification outputs are then
processed by a Hidden Markov Model (HMM) for temporal
smoothing. Results of this work have been used as a baseline
for comparison in multiple following works.

One such work was done by Juhan Nam et al [6], where sev-
eral machine learning methods were applied. PCA whitened
and normalized spectrograms were used for unsupervised
feature learning with Deep Belief Network (DBN). Hidden
activations were further processed by set of SVM classifiers,
activated using sigmoid function into posterior probabilities,
which were in turn post-processed by a two-state HMM for
temporal smoothing.

Also, HMMs have already been successfully applied to
audio processing tasks, such as phone classification leading
to speaker/gender identification in speech [7] or genre/artist
identification in music [7], [8].

B. Deep Learning

One early deep learning approach using large dataset was
based on Bi-directional Long Short-Term Memory (BLSTM)
recurrent neural network [9]. Two Short Time Fourier Trans-
form (STFT) spectrograms calculated with different window
lengths and filtered by semitone filterbank for logarithmic
frequency spacing were fed to the BLSTM network to learn
encoding of temporal context from before and after the esti-
mated frame.

Another contribution describes model for unsupervised
learning of piano music transcription [10]. This method reflects
the process by which observed signal is created through
superposition of acoustic signals generated by note events,
enabling estimation of instruments spectral characteristics.

Recently, deep end-to-end learning was also used for AMT
using separate acoustic model for note pitch estimation and
music language model (MLM) to exploit statistical correlations
between pitch combinations over time [11].

Music Information Retrieval Evaluation eXchange
(MIREX) is an annual event with purpose of evaluation
and comparison of novel approaches to various MIR tasks.

One recent MIREX submission reported quite dominating
results in task of note onset tracking [12]. Although authors
mention some spectral analysis and preprocessing steps, no
further details of their method are provided, except for short
motivation to use deep learning as a core algorithm.

In other submission, deep learning with CNNs was applied
to spectral images for notes onset detection [13]. After can-
didate onsets were detected, rectangular slices of Constant-Q
Transform (CQT) spectrogram centered at those times were
processed by CNN. Resulting note probabilities were filtered
by rule-based algorithm to obtain final predictions.

1) MusicNet: An initiative to establish and maintain a
large-scale labeled dataset of music, dedicated to development
and benchmark evaluation of machine learning models, was
expressed by Thickstun et al. in their work [3]. Authors
recognize the issue with datasets used for development and
comparison of Multiple-F0 Estimation methods as being in-
sufficient in size for training of modern machine learning
models. They introduce new, large-scale labeled dataset as a
publicly available resource for learning feature representations
of music, called MusicNet. Paper provides description of
the dataset statistics and an alignment protocol to enable
researchers its augmentation. Methodology for computing an
error rate of the labeling process is provided as well.

Second part of this contribution is a new benchmark evalu-
ation of various baseline machine learning models and feature
extraction approaches, in particular: i) MLP network trained on
spectrograms; ii) MLP network trained in end-to-end manner;
iii) CNN network trained in end-to-end manner.

Authors further present low level features learned by end-to-
end models. Results show, that learned features can outperform
spectrogram features. This behavior is discussed by means of
dataset statistics and exploratory analysis of learned features.

2) WaveNet: A novel deep neural network architecture
was introduced by researchers from DeepMind [2]. WaveNet
showed great results at generating high quality speech and
music audio signals, one sample at a time. This suggests, that
the hierarchical structures in this network architecture could
provide sufficient capacity for modelling musical structures
in AMT and related subtasks, such as timbre recognition for
instrument identification, or dynamics estimation for transcrip-
tions of higher fidelity.

WaveNet is a fully probabilistic and autoregressive model,
as each predicted audio sample is conditioned on all previous
ones. This modelling property is achieved through design of
network architecture, which is made by stacking layers of 1-
dimensional dilated causal convolutions, one on another.

First, causal convolutions only use values of samples from
previous timesteps, in order to preserve any possible causality
between subsequent values in given series of samples. More-
over, exponential growth in dilation factors enables to increase
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Fig. 1. Stack of dilated causal convolutions; reproduced from [2].

the receptive field1 by orders of magnitude, without greatly
increasing computational cost, through applying convolution
filter over an area larger than its length by skipping input
values with a certain step (dilation).

Another key element of WaveNet is the engagement of
residual and skip connections (see Fig. 2) across the whole
network. By introducing addition to the computation graph of
the network, they speed up convergence and prevent gradient
from vanishing. Also, the residual and skip connections are
parameterized, which means each connection has its set of
weights across number of channels.

III. OUR METHOD

We propose a method for polyphonic note transcription
based on deep end-to-end learning, to give rise to a robust
system through optimization-based extraction of ”highly in-
formative”, performance enhancing features. This should be
achieved by involving large dataset as a source of informa-
tion, sophisticated optimization algorithm for learning, and by
incorporating domain knowledge into network architecture.

Our approach builds on the design of WaveNet architecture.
We made several modifications against the configuration for
original application. We adjusted the model in order to use it
for our task and enable learning of usable features.

A. Adaptation for Frame-Level Transcription

Part of our contribution is the result of experimental search
for optimal training configuration, that would allow WaveNet
to learn from complex polyphonic audio right after random
initialization. While searching for this optimal setup, we used
to initialize the model by training on monophonic excerpts, in
order to prevent divergence when presented with polyphonic
data. We provide visual outline of this configuration in Fig. 2
and discuss our decision process further in this section.

We imposed some constraints on the setup, to enable
its adoption by anyone in possession of some (currently
fairly available) piece of hardware2. To stimulate further
experimentation, we release our implementation as an open-
source project3. However, due to these constraints, some trade-
offs had to be made when considering architectural hyper-
parameters and setup of training parameters.

1Receptive field is the number of samples on the input that WaveNet
can directly include into computation in an inference step to calculate single
estimation. Alternatively, it can be called interchangeably as window size.

2We used GTX TITAN X Maxwell GPU with 12GB RAM for training.
3http://vgg.fiit.stuba.sk/people/martak/amt-wavenet

The selected temporal resolution of input is 16 kHz, since it
is sufficient for representing fundamental frequencies of piano
range. Although some harmonic partials of several higher
piano tones above Nyquist frequency are lost, this should not
be critical for a single-instrument transcription scenario.

Further, the receptive field of our model is required to be
large enough to capture at least several full periods of lowest
piano tone fundamental frequency = 27.5 Hz, which at 16 kHz
requires approximately 580 samples. To satisfy this, we use
dilation stack with (1, 2, 4, 8, ..., 512, 1, 2, 4, 8, ..., 512) dilation
factors on top of initial causal convolution with no dilation.
We stick with the default filter width = 2, as presented in Fig.
1. Provided that filter width is constant for all layers,

receptive field = (f width−1)×

(
dilations∑

d

(d)

)
+1 (1)

where dilations is a set of dilation factors describing the stack
of dilated causal convolutions. This configuration provides
receptive field of 2048 samples, which captures fragment of
signal 0.128 seconds long. By providing small context of
temporal changes even to lowest frequencies, this enables
better identification of onsets and offsets.

The second most important parameter that conditions mod-
elling capacity of WaveNet is number of channels in each
layer. As the notion suggests, information passed between
layers flows through these channels. To enhance learning of
note-specific but also arbitrary features, we choose to use
128 channels for all dilation, residual and skip connections
throughout the network. We found, that going below this
number for given dilation stack would significantly reduce
ability to learn from scratch using just polyphonic data.

With this setup, the remaining memory capacity according
to stated constraint enables to process approximately 100, 000
audio samples in a single training step. Our experiments
suggest, that as much as number of channels and size of
dilation stack are crucial for modelling capacity, size of mini-
batch is crucial to convergence in the optimization process. In
our case, with batch size = 1, a single sequence of 100, 000
temporally correlated samples is fed to the network, so the
training step is fast due to nature of convolutional layer-
wise computation, but the optimization struggles. We ended
up using batch size of 20 temporally independent sequences
5000 samples long, which led to much faster optimization
progress as well as higher evaluation performance.

Also, we exclude the proposed [2] µ-law transformation and
subsequent one-hot encoding of input samples and process
them rather as scalars instead, since there was no noticeable
difference in performance according to our experiments.

Finally, by replacing softmax activation function with sig-
moid on the output layer, we get a multi-class (or multi-
label) classifier. We use 128 output channels, to conform with
number of pitches in MIDI standard and enable easy transfer
to other instruments, or even multi-instrument setups in the
future. This redundancy makes no harm, since network learns
to predict only the notes observed in the training data.
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Fig. 2. Our modification of WaveNet architecture in context of frame-level transcription learning task.

B. Training Configuration

Our framework for training and evaluation is written in
python, using TensorFlow [14] for machine learning, and
Librosa [15], pretty-midi [16] and mir eval [17] libraries for
visualization and manipulation of encountered data modalities.

During the training, multiple reader threads iterate over
randomly shuffled tuples of (audio,midi) files, turn them
into tuples of (input, label) snippets and put them in a queue
where training thread can access them in randomized order.

Loaded audio is first re-sampled to 16 kHz and cut into
sequences of samples, which are further augmented to enforce
centering of input segment against predicted time frame, thus
providing equally large temporal context from both sides.

Each input sequence is zero-padded from left by⌈
receptive field−1

2

⌉
and from right by

⌊
receptive field−1

2

⌋
. As

indicated in Fig. 2, this ensures shape compatibility of outputs
with labels, while setting predicted time frame to the center
of input segment being processed.

Along with audio, midi file is rendered into piano roll1 and
processed similarly into training labels. Velocities ∈ [0, 127]
are binarized to {0, 1} to only denote presence of notes,
reducing the task of regression to classification.

Model was trained using Adam optimizer [18] to minimize
cross-entropy loss. Weights were initialized using Xavier ini-
tializer [19] and biases were initialized to zeros.

IV. RESULTS

WaveNet model outputs a matrix of estimated note prob-
abilities in resolution equal to the input, thus of 16, 000
estimations per second, which is extremely redundant. For
meaningful quantitative evaluation, we sub-sample by aver-
aging down to 100 estimations per second.

1A matrix of integers indicating absence or presence of notes (rows) in
time frames (columns) together with velocities of played notes (values).

Estimated probabilities are smoothed with Hamming Win-
dow of 90ms in length. Thresholding into final predictions is
calculated using one of two following alternatives:

1) Global Thresholding (GT): Global threshold with best
F1-score on validation set is picked from all possible values
between 0 and 1, to conform with benchmark evaluation [3].

2) Note-level Thresholding (NT): Individual threshold is
determined for each note based on best note-level validation
performance, using same metric as [9].

For the sake of training and evaluation, we acquired Music-
Net from published website2. According to Nyquist-Shannon
sampling theorem, with sample rate of 16 kHz, frequencies
over 8 kHz where the timbral identity of many ensemble
instruments is represented, can’t be contained in the signal.
Therefore, we restrict our evaluation to single instrument
music for now. We only use musical pieces with ensemble
annotation ”Solo Piano”, according to MusicNet metadata file,
since this category covers major portion of the dataset. Prob-
ably the only major source of inconsistency when comparing
our approach to MusicNet benchmarks, is that those were
trained and evaluated on whole set for identification of note-
instrument combinations, thus classifying into 513 classes.

We preserve original split into training and testing data,
but hold out 3 training recordings (IDs 1763, 2208, 2514)
for validation. There are 3 Solo Piano recordings in test
split, one of which is the same piece (ID 2303) that was
used for benchmark evaluation in [3]. Speaking in numbers,
our (train, valid, test) split results in (150, 3, 3) tunes with
(52992, 1103, 427) seconds and (422418, 8850, 3887) note
events. The model has 2, 009, 601 trainable parameters. After
1 million iterations over 20 days of training, only 100 epochs
were passed, while no signs of overfitting were observed.

2http://homes.cs.washington.edu/∼thickstn/musicnet.html
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Fig. 3. Precision-recall curves of WaveNet checkpoints on test set.

In Fig. 3, we present precision-recall curves of several
model checkpoints saved throughout the training. These sug-
gest, that most of improvement was achieved during first half
of optimization time.

Metrics reported for GT in Table I are calculated in con-
formance to referred benchmarks [3]. Results show that our
approach can compete with best performing benchmark model
even when using significantly smaller window size. Also,
compared to best performing benchmark with equal window
size, we achieved 23,8% relative gain in average precision
metric, which is calculated as the area under the precision-
recall curve. When evaluated with NT, performance gets even
slightly better in both precision and recall metrics. Since
NT evaluation is based on set of pre-determined thresholds,
standard precision-recall curve can not be constructed and
therefore average precision is not reported.

TABLE I
OUR RESULTS IN CONTEXT OF MUSICNET BENCHMARKS.

Approach Win. Size Precision Recall Avg. Prec.

MLP, 2500 nodes [3] 2,048 53.6% 62.3% 56.2%
CNN, 64 stride [3] 16,384 60.5% 71.9% 67.8%
Our Method (GT) 2,048 64.3% 72.3% 69.6%
Our Method (NT) 2,048 65.6% 73.9% -

V. CONCLUSION

We proposed a method for the task of polyphonic note
transcription that uses adapted version of WaveNet − deep
end-to-end neural network architecture designed for raw audio
modelling. To our knowledge, WaveNet was not used for this
task before. When compared to benchmarks, results of our
method show promise, although given the significantly larger
model size, one could expect higher performance gains.

Possible future work might include further evaluation to
explore capacity of this method, e.g. in multi-instrument
setups. It might be useful to also analyze features learned by
intermediate representations of the model. This could lead to
deeper understanding of model performance and its enhance-
ment through further improvements of network architecture
and learning procedure.
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