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ABSTRACT   

Most of the existing solutions predicting visual attention focus solely on referenced 2D images and disregard any 

depth information. This aspect has always represented a weak point since the depth is an inseparable part of the 

biological vision. This paper presents a novel method of saliency map generation based on results of our experiments 

with egocentric visual attention and investigation of its correlation with perceived depth. We propose a model to predict 

the attention using superpixel representation with an assumption that contrast objects are usually salient and have a 

sparser spatial distribution of superpixels than their background. To incorporate depth information into this model, we 

propose three different depth techniques. The evaluation is done on our new RGB-D dataset created by SMI eye-tracker 

glasses and KinectV2 device.  

Keywords: saliency map, visual attention, egocentric video, RGB-D data, eye-tracker glasses 

 

1. INTRODUCTION  

Visual attention has been studied in many research areas including machine learning, computer vision, psychology or 

signal processing. Understanding where people look in the scene is very useful in applications of image processing such 

as image compression, scene interpretation, and computer graphics but also in marketing. We can predict the visual 

attention by various models, that typically represent this information in the so-called visual saliency maps. Most existing 

saliency models investigate only cues from 2D images (color, orientation, luminance or texture), which might lead to 

inaccurate saliency detection since our visual system operates in 3D environments. Two main factors contribute to the 

decision whether the subset in the visual field is salient or not. The first one, bottom-up saliency, depends only on the 

instantaneous sensory input, without taking into account the internal state of the organism [1]. It is fast and involuntary. 

In contrast to this, top-down saliency that takes into account the internal state, is slow, task-driven and voluntary. The 

methods described below deal mainly with the low level of attention and bottom-up saliency models. 



 

 
 

 

 

2. VISUAL ATTANTION AND SALIENCY MODELS USING RGB-D DATA 

There have been proposed various approaches to compute saliency, such as hierarchical, Bayesian, decision-theoretical, 

information-theoretical, graphical, using spectral analysis or pattern classification. One of the most known bottom-up 

hierarchical model is proposed by Itti et al. [1]. It extracts three visual features: color, intensity and orientation. 

Normalised feature maps are combined into three conspicuous maps for intensity, color and orientation and finally into a 

single saliency map.  

Our approach is focused mainly on the hierarchical superpixel-based models. Superpixels are regions in an image which 

can be used as basic units (primitives) in the next image processing like segmentation, salience mapping or object 

detection [2]. 

 

2.1 Visual attention and 3D visual features 

Following studies have examined how visual attention may be influenced by 3D visual features and analyzed the 

difference between 2D and 3D eye fixation data. Lang et al. in their work [3] investigated whether the spatial 

distributions of eye fixations differ for 2D and 3D images. The authors collected a larger eye fixation dataset for 2D-vs-

3D scenes. Each participant was assigned two blocks of 100 randomly chosen images, one of the blocks contained 2D 

while the other 3D images. Both blocks were viewed on a 3D LCD display in the corresponding mode (3D or 2D) using 

the active shutter glasses in case of 3D images. The eye fixations were captured using an infra-red illumination based 

remote eye-tracker. The images were displayed in random order for 6 seconds followed by a grey mask for 3 seconds. 

The observations coming from their study are as follows:  

¶ Depth cues modulate visual saliency to a greater extent at farther depth ranges. Furthermore, humans fixate 

preferentially at closer depth ranges. 

¶ A few interesting objects account for majority of the fixations and this behavior is consistent across both 2D and 

3D. 

¶ The relationship between depth and saliency is non-linear and characteristic for low and high depth-of-field 

scenes. 

¶ The additional depth information led to an increased difference of fixation distribution between 2D and 3D 

version, especially, in case of multiple salient stimuli located in different depth planes. 

Ma CY and Hang HM published in [4] their learning-based saliency model with depth information. They have also 

collected a 3D eye fixation dataset, with a slightly different experimental setup. They used Tobii TX300 eye- tracker and 

a 23-in patterned retarder 3D display. The experiments did not show a significant difference between watching 2D and 

3D content, except for the first three fixations. In these initial fixations people look at the most interesting objects. 

However, in the next fixations their eyes move to other areas in the image and the 2D low-level features dominate human 

visual attention again. 

Jansen et al. [5] investigated the influence of disparity on viewing behavior in the observation of 2D and 3D still images. 

They found that the additional depth information led to an increased number of fixations, shorter and faster saccades, and 

broader spatial exploration. However, no significant difference was found between the viewing of 2D and 3D stimuli 

concerning the saliency of several 2D visual features (mean luminance, luminance contrast and texture contrast). 

Hakkinen et al. [6] measured and compared the eye movements of participants watching the same video in 2D and 3D 

versions. The result of this research shows, that eye movements are more widely distributed in 3D content. Viewers 

watching 3D content paid attention also to other targets than main actors (those were the only target in 2D content). The 

main contribution of this work is the fact, that depth provides additional information about scene and thus creates new 

salient areas. This result suggests the existence of a saliency map from depth, and a potential summation operation 

during the integration of 2D and depth saliency information.  

Wang et al. [7] found that objects closest to the observer always attract the most fixations. The number of fixations on 

each object decreases as the depth order of the object increases, except for the furthest object which receives a few more 

fixations than the one or two objects in front of it. Considering the influence of center-bias in 2D visual attention, these 

results indicate the existence of an additional location prior according to the depth in the viewing of 3D content. This 

location prior indicates the possibility of integrating depth information by means of a weighting. 

 



 

 
 

 

2.2 Methods of an incorporation of depth information into the model 

Hence, the depth has an impact on the visual attention and incorporating the depth information into the saliency model is 

reasonable. Existing computational models that use depth information can be classified into three categories [8]: 

Depth-Weighting Models [9], [10], [11]: These models treat a depth information as a weighting factor and does not 

contain any feature-extraction process. The saliency value of each pixel of the resulting map is directly related to its 

depth. In addition to 2D scene we also need depth map as the input. This map can be acquired either by depth detection 

equipment (e.g. Kinect device) or using depth estimation algorithm on two views.  

The model of Cheng et al. [15] modifies an existing approach based on region contrast by adding a depth feature. The 

depth information is in this model treated only as a weighting factor. 

Depth-Saliency Models [12], [13]: This category of models takes depth saliency as additional information. They first 

extract depth features from the depth map to create feature maps. The depth saliency maps are then generated and 

combined with 2D saliency maps. 

Wu et al. [16] proposed a model of RGB-D salient object detection via feature fusion and multi-scale enhancement. They 

first convert the input RGB image into CIE L*a*b space and normalize the depth image into the range [0, 255]. The 

converted color image is then segmented into superpixels. Two adjacent superpixels are merged together if the difference 

between their average depths is under a threshold value. Computed color and depth contrast for each merged superpixel 

is subsequently fused to create a saliency map. Finally, the multi-scale enhancement is applied to this map to improve the 

detection precision. 
Stereo-Vision Models [14]: The last type of models takes into account the mechanisms of the stereoscopic perception in 

the human visual system. Unlike the first two models, this model takes two stereo images as input, from which 2D visual 

features can be considered. 

 

3. OUR CONTRIBUTION 

3.1 Experimental studies on visual depth attention 

The goal of the first experiment was to find out: How does distance between observer and observed object (depth) affect 

the visual attention? The experimental scene was constructed in the school laboratory, where we have evenly distributed 

and hung twelve objects wrapped in colored paper on the wall. Red, beige and yellow colors were used for the wrapping 

paper. The farthest object was located approximately 9 meters from the participant. The setup is illustrated in Figure 1. 

 

 

Figure 1.  CroParticipant with SMI eye-tracker glasses (left), experimental scene aquired by SMI eye-tracker glasses (middle) and 

layout of experimental scene where cross represents position of the participant while objects are illustrated as circles (right). 

In the described experimental scene, we have done three experiments using eye-tracking glasses. 

¶ Experiment 1: all 12 objects (see Figure 1) were beige (L*a*b* = 80, 8, 50), 

¶ Experiment 2: one object was red (L*a*b* = 38, 61, 39) and the rest were beige (L*a*b* = 80, 8, 50). The 

depth position of the red object has been changed during the experiment, always for the next participant. 

¶ Experiment 3: one object in variable position was yellow (L*a*b* = 81, 13, 97) and the rest were beige 

(L*a*b* = 80, 8, 50). In this case, the depth position of the yellow object has been changed during the 

experiment, always for the next participant. (All L*a*b* values are for daylight D65.) 



 

 
 

 

We had 20 participants, each of them has participated in all three experiments after a 3-point calibration. Consequently, 

they were instructed to walk into the room and stand on the cross position. Participants had to freely look at the scene 

without any specific task given. From each observation of scene, we took only the first three fixations into account, since 

for some participants there were no more fixations or after this number the fixations were repeated. In the process 

of evaluation, we have assigned a greater weighting to the first fixation than the third one to account for the order of 

these fixations. To evaluate the first experiment, we have summed up every weighted fixation from all the participants at 

each object separately, resulting in Figure 2. From the graph we can see that people tend to look at the closer objects 

sooner than those in the back. Evaluation of the second experiment indicates that as long as the red object was at one of 

the first 9 positions, it drew attention of the most participants. Such object at the farther locations does not seem to have 

an impact on the human attention. Evaluation of the third experiment brought a different observation. Despite the small 

number of participants, the measured gaze positions highlight the fact that this color does not have such an evident 

impact on human attention as the red object in the second experiment. The highlighted object does not grab the 

participants' attention. Their eye fixations have a random distribution, mainly around the objects closer to the participant. 

The color difference between beige and yellow objects was L*a*b* = 46 what is considerably lower than the color 

difference between beige and red objects in the second experiment, which was: L*a*b* = 68. In Figure 2 we can see also 

the result of fitting process, where the actual distance from object is used and the farthest object is removed because it 

exceeded Kinect range. After the normalization we got the following function: 
7544.00287.00002.010*2 237 -+-= - xxxy

         (1) 

A 2D saliency map is then refined by multiplying each value by output of this polynomial function.  

 

Figure 2. Gaussian scale-space pyramid create an interval in the difference-of-Gaussian pyramid. 

3.2 New video dataset consisting of RGB-D Data and gaze position from eye-tracker glasses  

The second set of experiments was done in a complex scene using the same eye-tracker with an additional Kinect device 

mounted on the head. The setup is illustrated on the Figure 3. We have placed many different sized and colored objects 

like flowers, books, toys etc. in the experimental scene, some closer than the others. Unlike the previous experiments, the 

participant could freely move around the room and look at any object that attracts his attention. Our final dataset includes 

experimental data of 6 participants, having video records in the range of 15 to 30 seconds. While Kinect device has a 

frame rate of 30 fps, the SMI eye-tracker has only 24 fps. To properly synchronize their outputs, we store also timestamp 

of each frame. 

Saliency model expects 3 images on the input: color, depth and fixation image. So far we have color and depth images 

from the Kinect device, but not the fixation image. The transformation of gaze information from eye-tracker coordinate 

system to Kinect is therefore necessary. Corresponding pairs of color frames for the whole video is found automatically 

using timestamps, we just need to manually find a single initial pair. To get a location of a gaze point in Kinect space, we 

create a homography between these pairs. 

 

3.2.1 Image registration 

Each of the pair of frames in videos acquired simultaneously by Kinect and also by the eye-tracker camera should be 

registered. The homography can be found by providing the corresponding key-points of two images. We have achieved 

the best results using SIFT algorithm [17] to detect and describe local features in a combination with Brute-Force 

matcher (cross check enabled). Looking at pairs of images we noticed that an image from the eye-tracker will be always 

a subset of a Kinect image and the whole scene will have some small offset due to different angles of devices. Based on 

this assumption, we kept only matches whose distance of x coordinates (y coordinates) did not exceed the mean (median) 

of all the other matches. The homography is then found using the RANSAC method [18] (Figure 3). 



 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3. Experimental setup of the second series of experiments (left), Visualization of a homography: eye-tracker image (middle), 

Kinect  image (right). Blue dot is the measured gaze position. 

3.2.2 Post-processing of the depth images 

Zero values in the depth data indicate that the objects depth could not be estimated. In addition to missing depth values 

caused by object being out of range, in our depth frame we had another artefact in the form of black borders on left and 

right side of the image (Figure 4a). This is a consequence of our previous mapping of depth frame to color space that has 

to be done because of different angles of sensors. For the further use of these data we had to supplement the missing 

values. First of all, we have removed the salt and pepper noise using the median blur as shown in Figure 4b. Then, we 

have created a binary mask (Figure 4c) representing the invalid pixels. To restore the values of the mask region we used 

an in-paint method that calculates the missing values restricted by the binary mask using the neighborhood. The final 

smoothened depth can be seen in Figure 4d. 

 

 
Figure 4. Depth smoothing: a) raw depth image, b) removed salt and pepper noise, c) noise mask, d) smoothened depth image. 

 

3.2.3 Egocentric RGB-D eye-tracker dataset 

The final version of the created dataset RGB-D Gaze consists of 6 egocentric videos acquired by individual participants. 

Each of them includes RGB-frame, D-frame and the corresponding measured gaze position in each frame. Number of 

frames in one video varies in the range of 570 -1100. Dataset is available for download on the web site: 

http://vgg.fiit.stuba.sk/2016-06/egocentric-rgb-d-eye-tracker-dataset/ 

 

4. PROPOSED SUPERPIXEL-BASED SALIENCY MODEL USING RGB-D DATA 

Our aim is an enhancement of a 2D saliency model by the depth information using RGB-D data. In general, the proposed 

incorporation of the depth information should be also adapted for any 2D saliency model. For this evaluation, we have 

implemented the 2D superpixel-based saliency model as described in [19], which computes global contrast and spatial 

spread for each superpixel. The assumption is that salient object superpixels usually show noticeable color contrast with 

background superpixels and the spatial distribution of salient object superpixels is sparser than background superpixels. 

To incorporate the depth information into the saliency model, we have proposed three different techniques that are 

described in this section. 

http://vgg.fiit.stuba.sk/2016-06/egocentric-rgb-d-eye-tracker-dataset/


 

 
 

 

Depth contrast (DC): In the first step, a calculation of superpixels in the depth image has been done. Depth contrast is 

computed as a difference between mean depths of two superpixels: 

 
ji mdmdjiWiDC -Ö=ä ),()(

           (2) 

where mdi stands for the mean depth of the i-th superpixel and the weight W(i, j) is defined as: 
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            (3) 

where |SP|j stands for the number of pixels in the superpixel and Simd(i, j) is the distance between two superpixels. This 

feature DC(i) is added to the final multiplication of the color contrast and spatial spread to generate the final RGB-D 

saliency map. 

Simple (linear) depth Weighting (SD): We have simply divided each saliency value by the pixel’s depth. At this time, 

we supposed that human attention is not just linear and this approach would not lead to good results, which is what we 

wanted to prove. 

Advanced Depth Weighting (AD): Our intention in the last technique was to take into account the actual human depth 

perception. We made use of our first experiment with eye-tracker glasses and the fitted polynomial curve (Figure 2). In 

this case, the polynomial function was used as a multiplicative factor for the depth information.  

 

4.1 Implementation of the experimental system 

The experimental system has been implemented in the C++. A diagram of the whole calculation process is presented in 

Figure 5. 

 

Figure 5. Diagram of the implemented experimental system. 

 

5. EVALUATION AND RESULTS 

5.1 Examples of the evaluation images 

In the following examples (Figure 6) we compare results of saliency map with depth contrast (DC) and no depth cases 

(ND) with real fixations. We have labelled image locations that received the highest saliency value with blue (for depth 

contrast) and red circles (for no depth). A human fixation is represented by a green circle in the image. 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 
Figure 6. Examples of results with different impacts of the depth information.  

 

In Figure 7 we provide a comparison of different saliency maps of a single frame for a better understanding of visual 

differences between depth incorporation techniques that we have implemented. 

 

 
a)                  b)   c)   d) 

Figure 7. Contrast object in the scene: a) original image with labels, b) depth image, c) saliency map with no depth, d) saliency map 

with depth contrast. 

 

5.2 Results 

We have evaluated the following 4 cases of the depth incorporation into the 

previous saliency model: 

¶ no depth (ND), 

¶ depth contrast (DC), 

¶ simple (linear) depth weighting (SD), 

¶ advanced depth weighting (AD). 

ROC (Receiver Operating Characteristic) curves (Figure 8 left) of the proposed depth techniques shows that the linear 

weighting produces the worst results. Differences between other depth cases are very small and difficult to distinguish 

from ROC curves and AUC (Area Under Curve) metric. However, the NSS (Normalized Scanpath Saliency) comparison 

in (Figure 8 right) revealed that depth contrast achieves the best results and together with advanced depth weighting 

performs better than case with no depth included. 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. ROC curves of different cases of depth incorporation (left) and   AUC and NSS comparison of depth incorporation (right). 

 



 

 
 

 

 
Fig. 9. Comparison of the depth impact on each individual participant. 

 

To compare results between participants, we have created a clustered column chart (Figure 9), where each cluster 

represents one individual. The chart underlies the theory that each individual perceives color, size and depth of objects in 

a slightly different way. While attention of participant with number 1 and 2 does not match with our saliency model very 

well, we were able to predict attention of participant 3 and 4 reasonably. There was no participant who would perceive 

depth in a linear manner (linear depth). On the other hand, depth contrast could predict attention almost of every 

participant most reliable. Our hypothesis is that the visual attention model should be adaptive for various type of 

observers. In the future work, we will strongly focus on this problem. 

6. CONCLUSION 

Lack of published 3D datasets is the main problem of modeling 3D visual attention. We have therefore created an 

innovative dataset captured from a first person-view perspective containing RGB-D images. The setup that we used 

consists of SMI eye-tracker glasses and the Kinect device. We have conducted several experiments with human visual 

attention and came to the conclusion that depth has an influence on our attention. Participants were generally looking at 

larger and more contrast objects, another very important feature was the depth itself. We also observed that attention 

strongly depends on an individual participant although all of them were instructed in the same way. Our saliency model 

uses superpixels as the basic units of image space and computes their global color contrast and spatial spread in order to 

predict human attention. To improve its results, we have implemented three techniques of depth incorporation. First one, 

depth contrast, promoted superpixels with a unique depth compared to the rest of superpixels. Linear depth technique 

promoted pixels linearly assigned higher values to objects closer to camera, lower to further ones. This linear depth 

technique was not sufficient to predict human attention. The last one, advanced depth technique, was based on additional 

depth contrast feature and advanced depth technique led to better results of the saliency model. This model was 

evaluated on our new created dataset.  

In the future work, we plan to extend the existing experiment in order to evaluate more participants. Moreover, we want 

to prove that there is a possibility of the data clustering and, finally, we want to create an adaptive attention model using 

the RGB-D data. 
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