8
Peter Fillo

Hand Tracking and Gesture Recognition Using Echo State Neural Networks
7

Hand Tracking and Gesture Recognition Using Echo State Neural Networks
Peter Fillo*
Slovak University of Technology
Faculty of Informatics and Information Technologies
Ilkovičova 3, 842 16 Bratislava, Slovakia
fillopeter@gmail.com
Abstract. Tracking an object in a video sequence is a complex problem which presents one of the fundamental task of image processing. One of the many use cases is controlling using hand gestures in Human-Computer Interaction. This paper introduces real-time hand recognition and tracking in video sequence with a classification of performed hand gestures. Hand recognition is based on foreground segmentation and skin region detection. Attributes of hand movements are being recorded and used as an input to a echo state neural network which performs hand gesture classification. Work presents proposed tracking algorithm and first results of gesture recognition.
1 Introduction
Robust detection and analysis of object movement trajectory is a subject of many current researches. A typical application example is a gesture controlled system, which is one of the dominant tasks in Human-Computer Interaction (HCI) research.
This work deals with real-time hand recognition and hand tracking in a video sequence and subsequent analysis and classification of the performed gesture using echo state neural networks (ESN).

The first part briefly describes the ESN networks and explains their application and training. The second part of this paper presents a proposed hand tracking algorithm in a video sequence. The usage of ESN networks for gesture recognition together with first experiments is described in the third part. The evaluation of achieved results is discussed at the end of the paper along with application of ESN networks for gesture recognition.
2 Echo state neural networks

The echo state neural networks (ESN) can solve many problems based on time context. They were used successfully e.g. for online prediction of movement data [4] or epileptic seizure detection [2].

ESN networks are the special type of recurrent neural networks (RNN), but the randomly initialized hidden layer contains a high number of neurons, called dynamic reservoir (DR). The process of training the ESN networks is significantly simplified, because there is only modification of weight connection belonging to the output neurons. The high number of randomly interconnected neurons in the dynamic reservoir enables to transform the inputs into multidimensional feature space, the information of which is much richer as the input signal does [3].
The architecture of ESN network, shown in Figure 1, is similar to regular RNN. It contains input, hidden and output neurons (or units) organized into three layers.

[image: image1]
Figure 1. The basic network architecture [5].
The activation of internal units x(n+1) at time step n+1 is updated according to:

[image: image2.wmf]))

(

)

(

)

1

(

(

)

1

(

n

y

W

n

Wx

n

u

W

f

n

x

back

in

+

+

+

=

+

.
(1)

The output y(n+1) at time step n+1 is computed according to:

[image: image3.wmf])))

(

)

1

(

)

1

(

(

(

)

1

(

n

y

n

x

n

u

W

f

n

y

out

out

+

+

=

+

,
(2)
where f are the internal unit’s output functions, u(n), x(n) and y(n) are activations of input, internal and output units at time step n, Win, W, Wback and Wout are weight matrixes for input weights, internal connections, connections that project back from the output to the internal units and connections to the output units [5].
2.1 Training ESN
The training of ESN networks consist of following steps, outlined by [6].
Step 1. Initialization an untrained ESN which has the echo state property. Create a random initialized weight matrixes Win, W, Wback (typically from a uniform non-zero distribution over [–1; 1]) with guarantee an echo state property.
Step 2. Sample network training dynamics. Initialize the network state arbitrarily (e.g. to zero state x(0) = 0). Drive the network by the training data, for times n=0,…,T0,…,t. For each time larger or equal than an initial washout time T0, collect the concatenated input/reservoir/previous-output states (u(n), x(n), y(n–1)) into a state collecting matrix M. Similarly, for each time larger or equal to T0, collect the sigmoid-inverted teacher output into a teacher collection matrix T.
Step 3: Compute output weights. Finally, weight matrix Wout for connections to the output units is computed by linear regression according to:

[image: image4.wmf]1

-

=

TM

W

out

,
(3)
where M-1 is pseudoinverse matrix of M.

3 Hand tracking algorithm and implementation
The whole algorithm for hand recognition and hand tracking in a video sequence and subsequent gesture recognition is schematically shown in Figure 2. Input image is taken from a web camera with resolution of 640x480. The proposed method assumes stationary camera and static background. The algorithm for hand tracking uses segmented foreground and color information of tracking object (in our case, the hand). The similar principle of hand tracking was applied in [7]. The tracked object is recorded in a form of feature vector, which is then processed by ESN in order to classify the performed movement – the gesture.
Implementation of hand tracking algorithm has been done in C/C++ using Intel OpenCv Library.

[image: image5.png]Foreground
segmentation

Image acquisition,
preprocessing

Creating background
model

Acquisition color
patterns

!

Color filter, Skin region
detector

]

Hand segmentation

Signal analysis

!

!

Hand model

Gesture classification

Figure 2. Scheme of the proposed algorithm for hand tracking and gesture recognition.
3.1 Foreground segmentation

The first step of the tracking algorithm is segmentation of background. Acquired frames from the web camera contain a lot of noise, which in effect cause the values of static points in background to differ substantially between two following frames. Considering this fact and complexity of the algorithm for background segmentation, it’s preferable to use the codebook method [1]. This method is based on setting of thresholds, which dictates whether given pixel belongs to the background model or not. With user interaction, these thresholds can be configured and we can get a properly segmented foreground.
The background model is computed in YUV color space from 50 subsequent frames, which contain no hand (or no tacking object, in general). Incorrectly detected artifacts in the segmented foreground mask are removed by morphological operations and object removing according to its minimal sizes. The result of correctly segmented foreground for pre-configured values are shown in Figure 3.
[image: image6.png]

Figure 3. Resulting mask of segmented foreground.
3.2 Color filter and skin region detection
The basis for tracking algorithm is color information of tracked object. Several color samples of tracking object are obtained with user’s assistance. These filters operates in HSV color space, which is better for representing color information than RGB.

The color filter segments an image according to ranges of saturation and lightness – value, in the Figure 4. This parameters are calculated from an obtained skin color samples and their interval boundaries can be configured interactively by user. Low values of saturation leads to imprecise corresponding hue values, hence a setting of the saturation boundary values was necessary.
[image: image7.emf]
Figure 4. Mask filtering the saturation a value channels in defined interval.
Skin region detection focuses on segmentation in the hue channel. From the obtained color samples of tracked object, a mean value μ and standard deviation σ is calculated. We assume a normal distribution and then finding of similar color hue in an image is computed using the Gauss probability density function:

[image: image8.wmf](

)

2

2

2

)

,

(

2

1

)

,

(

s

m

p

s

-

-

=

y

x

f

e

y

x

pdf

,
(4)
where f(x,y) is a hue image function.

The result is probabilistic image, which denotes the similarity between the hue value and reference sample for each pixel. Setting proper threshold of probabilistic image gives us a mask of desired (searched) color hue, as can be seen in the Figure 5.
[image: image9.emf]
Figure 5. Mask filtering color hue obtained from the sample.
3.3 Hand segmentation and hand model
Last phase of the tracking algorithm is a hand segmentation and creation of its model. By combining all obtained masks from previous steps, we get the final mask, shown in Figure 6, that represents objects. This objects are parts of segmented foreground with similar color as the sample. The biggest of these objects is considered to be the tracked object – the hand.

[image: image10.png]

Figure 6. Final mask for hand segmentation.
Hand is described by the hand model defined bellow:

[image: image11.wmf])

,

,

,

(

t

t

t

t

t

f

w

r

p

s

=

,
(5)
where pt=(x,y) is a center of tracking object, rt is the radius of the minimal enclosing circle, wt=(width(t), height(t)) width and height describing ellipse of object's contour, ft is vector representing recognized fingers, which recognition is based on convex defects of contour and ring around the hand center. Result of whole hand segmentation shows Figure 7.
 [image: image12.png]

Figure 7. Final result of hand segmentation with hand tips detection.
4 Gesture recognition and experiments
Here we focus on gesture recognition by ESN networks. We repeated and compared experiments from Reservoir Computing for Sensory Prediction and Classification in Adaptive Agents [8].
We obtained hand movement feature vectors using our presented algorithm applied for a blue glove instead of skin color. Measured data – features are velocity dx(t), dy(t) and changeable moving angle θ(t) of hand’s center defined below:

[image: image13.wmf]640

/

))

1

(

)

(

(

)

(

-

-

=

t

x

t

x

t

dx

(6)

[image: image14.wmf]480

/

))

1

(

)

(

(

)

(

-

-

=

t

y

t

y

t

dy

(7)

[image: image15.wmf](

)

p

q

2

/

)

(

)

(

)

1

(

)

1

(

)

(

)

1

(

)

(

)

1

(

arccos

)

(

2

2

2

2

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

-

-

+

-

-

=

t

dy

t

dx

t

dy

t

dx

t

dy

t

dy

t

dx

t

dx

t

(8)
where x(t), y(t) are coordinates of hand’s center.
We trained five types of gestures as in [8], that are shown in Figure 8. For a gesture recognition we used ESN with 3 input units (dx, dy, θ), 1000 internal units in DR and 5 output units, each representing one gesture. The coefficient of internal units connection was 0.3, extra input bias to DR was 0.001 and initial random orthogonal matrix with all eigenvalues α=0.9 was used. Data set was composed of 50 samples (10 of each gesture), which have been split randomly into training set (70%) and testing set (30%). Each training sample contained approximately 200 time steps, which represent an iterations of gesture.
[image: image16.png]Horizontal Vertical Clockwise Anticlockwise 8-shape
—_— O 00
05 10 05 10 05 10 05 10 05

Figure 8. Types of tested gestures.
During the training and testing of each gesture sample, the ESN had 30% of sample time to forget the DR state from the previous sample. After this at each time ESN was classified given gesture. Achieved results of gesture recognition shown in Figure 9.
[image: image17.emf]horizontal vertical clockwise anticlockwise eightshape

0

20

40

60

80

100

GESTURE RECOGNITION

horizontal

vertical

clockwise

anticlockwise

eightshape

Figure 9. Results of gesture recognition.
Table 1. summarizes achieved results of our gesture classification and compares it to the results gained in [8].
Table 1. Comparison of achieved results for test data.
	
	Our results (%)
	Reference work [8] (%)

	Horizontal
	96.60
	91

	Vertical
	96.47
	85

	Clockwise
	99.81
	87

	Anticlockwise
	98.14
	96

	8-shape
	92.76
	65

	average
	96,55
	84,8

Although our project is designed for real-time gesture recognition, this part has not been implemented yet. Therefore we use Matlab for compute classification from sampled data. The real-time computation is now our main priority.
5 Conclusions

We have presented in this paper the novel algorithm for hand tracking and gesture recognizer by using the ESN networks.

This paper contains a description of proposed hand tracking algorithm in real-time, which works quite well with the user’s interaction and indoor conditions. The whole algorithm has been implemented and evaluated in first experiments: recognition of one of five type of gesture. Results of this experiments confirm that ESN networks have an ability to gesture recognition. Further work will be concerned in the classification improvements by ESN network parameters tuning and real time implementation.
References

[1] Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library. O'Reilly Media, Inc., Cambridge, (2008).
[2] Buteneers, P., at al: Real-time Epileptic Seizure Detection on Intra-cranial Rat Data using Reservoir Computing. In: Lecture Notes in Computer Science, Berlin, Springer, (2009), pp. 56–63.

[3] Čerňanský, M., Makula, M.: Spracovanie postupností symbolov pomocou ESN sietí. In: Kognice a umělý život - KUZV VII, Smolenice, Slovakia, (2007).

[4] Hellbach, S., et all: Echo State Networks for Online Prediction of Movement Data – Comparing Investigations. In: Conference of Artificial Neural Networks (ICANN) 2008, Auckland, Springer, (2008), pp. 567–574.

[5] Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Technical Report GMD 148, German National Research Center for Information Technology, (2001).

[6] Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach. Technical Report, Fraunhofer Institute AIS, St. Augustin-Germany, (2002).

[7] Kang, H., J., JUNG, M.,Y.: Human-Computer-Interface (HCI) using Hand Motion. Computer Vision Final Project Report, (2008), [Online; accessed February 22th, 2010]. Available at: https://cirl.lcsr.jhu.edu/wiki/images/d/df/ CV2008_Example2.pdf.

[8] Weber, C., et al: Reservoir Computing for Sensory Prediction and Classification in Adaptive Agents. Machine Learning Research Progress, Nova publishers, (2008).
internal units - DR

output units

input units

* 	Master degree study programme in field: Software Engineering �Supervisor: Dr. Vanda Benešová, Institute of Applied Informatics, Faculty of Informatics and Information Technologies STU in Bratislava

IIT.SRC 2010, Bratislava, April 21, 2010, pp. 1–8 = + 1 - 1
8
.

[image: image18.png].....................

......

_1328308579.unknown

_1328357858.unknown

_1328393154.unknown

_1328512683.unknown

_1328346979.unknown

_1302872503.unknown

_1303324130.unknown

_1301773716.unknown

